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Abstract. A realistic scheme for masses and mixing of leptons is investigated in the model with gauged
SO(3) lepton flavor symmetry. Within this scheme, a nearly bimaximal neutrino mixing pattern with
a maximal CP-violating phase is found to be the only possible solution for reconciling both solar and
atmospheric neutrino flux anomalies. Three Majorana neutrino masses are nearly degenerate and large
enough to play a significant cosmological role. Lepton flavor-violating effects via SO(3) gauge interactions
can be as large as the present experimental limits. Masses of the SO(3) gauge bosons are bounded to be
above 24 TeV when the SO(3) gauge boson mixing angle θF and coupling constant g′

3 are taken to be the
same as those (θW and g) in the electroweak theory.

Evidence for oscillation of atmospheric neutrinos (and
hence nonzero neutrino mass) reported recently by the
Superkamiokande Collaboration [1] is thought as a ma-
jor milestone in the search for new physics beyond the
standard model(SM). Massive neutrinos are also regarded
as the best candidate for hot dark matter, and may play
an essential role in the evolution of the large-scale struc-
ture of the universe [3]. The nonzero neutrino mass can
also provide a natural explanation for the solar neutrino
problem which is in fact the first indication of neutrino
oscillation [4]. The solar neutrino flux measured recently
by the Superkamiokande Collaboration [2] is only about
37% of that expected from the standard solar model [5].
The SM has been tested by more and more precise exper-
iments; its greatest success is the gauge symmetry struc-
ture SUL(2)×UY (1). Nevertheless, neutrinos are assumed
to be massless in the SM. To introduce masses and mixings
of the neutrinos, it is necessary to modify and go beyond
the SM. As a simple extension of the SM, it is of interest to
investigate possible flavor symmetries among three fami-
lies of leptons. In a recent paper [6], we have introduced
gauged SO(3) symmetry for the three lepton families and
observed that it has some remarkable features which are
applicable to the current interesting phenomena concern-
ing neutrinos. As the first essential step, it has been shown
[6] that the SO(3) gauge symmetry allows three Majo-
rana neutrino masses to be nearly degenerate1 and large
enough for hot dark matter. The nearly bimaximal mix-
ing patterns (which include the bimaximal mixing pattern
[11,12] and the democratic mixing pattern [13,14]) with
maximal CP-violating phases reconcile both solar and at-
mospheric neutrino flux anomalies. As the vacuum struc-

1 Recently, authors in [7–10] have also discussed SO(3) flavor
symmetry in connection with nearly degenerate neutrinos.

ture of spontaneous SO(3) gauge symmetry breaking can
automatically generate a maximal CP-violating phase, the
scheme can be made to be consistent with the neutrinoless
double beta decay; this leads to the Georgi–Glashow form
for the neutrino mass matrix [15]. In this paper, we are
going to further investigate such a gauge model and show
how to carry out other necessary steps to realize a realis-
tic scheme for masses and mixing of the leptons. As was
expected in [6], the realistic scheme does not significantly
change the main interesting features mentioned there. In
particular, it will be seen that within the realistic scheme
presented here, the bimaximal mixing pattern becomes
the only possible solution for reconciling both solar and
atmospheric neutrino data.

For a more simple and model-independent considera-
tion, we shall start directly from the following SO(3)F ×
SU(2)L×U(1)Y invariant effective Lagrangian for leptons,

L =
1
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which is assumed to result from the integration out of
heavy particles. LSM denotes the Lagrangian of the stan-
dard model; L̄i(x) = (ν̄i, ēi)L (i=1,2,3) are the SU(2)L
doublet leptons; eR i (i=1,2,3) are the three right-handed
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charged leptons; φ1(x) and φ2(x) are two Higgs doublets;
ϕT = (ϕ1(x), ϕ2(x), ϕ3(x)) and ϕ′T = (ϕ′

1(x), ϕ′
2(x),

ϕ′
3(x)) are two complex SO(3) triplet scalars; χ(x) and

χ′(x) are two singlet scalars; M1, M2, M , M ′
1, M ′

2, M ′; and
MN are possible mass scales concerning heavy fermions;
and Ca, C ′

a, and C ′′
a (a = 0, 1) are six coupling con-

stants. One can obtain the structure of the above effec-
tive Lagrangian by imposing an additional U(1) symme-
try; this is analogous to the construction of the C0 and
C1 terms discussed in detail in [6]. After the symmetry
SO(3)F ×SU(2)L×U(1)Y is broken down to the U(1)em

symmetry, we obtain mass matrices of the neutrinos and
charged leptons as follows:

(Me)ij = m1
σ̂iσ̂j

σ2 + m′
1
σ̂′

iσ̂
′
j

σ′2 + m′′
1δij ,

(Mν)ij = m0δij + m′
0
σ̂iσ̂

∗
j + σ̂j σ̂

∗
i

2σ2

+m′′
0
σ̂′

iσ̂
′∗
j + σ̂′

j σ̂
′∗
i

2σ′2 , (2)

where the mass matrices Me and Mν are defined in the
basis LM = ēLMeeR + ν̄LMννc

L + H.c.. The constants
σ̂i = 〈ϕi(x)〉 and σ̂′

i = 〈ϕ′
i(x)〉 represent the vacuum ex-

pectation values of the two triplet scalars ϕ(x) and ϕ′(x).
The six mass parameters are defined as: m0 = C0v

2
2/MN ,

m′
0 = C ′

0(σ
2/M2

2 )(v2
2/MN ), m′′

0 = C ′′
0 (σ

′2/M
′2
2 )(v2

2/MN ),
m1 = C1v1σ

2/M1M2, m′
1 = C ′

1(ξ/M)(v1σ
2/M ′

1M
′
2) and

m′′
1 = C ′′

1 v1ξ
′/M . Here σ =

√|σ̂1|2 + |σ̂2|2 + |σ̂3|2, and
σ′ =

√|σ̂′
1|2 + |σ̂′

2|2 + |σ̂′
3|2. ξ = 〈χ(x)〉 and ξ′ = 〈χ′(x)〉

denote the vacuum expectation values of the two singlet
scalars.

Utilizing the gauge symmetry property, it is conve-
nient to reexpress the complex triplet scalar fields ϕi(x)
and ϕ′

i(x) in terms of the SO(3) rotational fields O(x) =
eiηi(x)ti , O′(x) = eiη′

i(x)ti ∈ SO(3):
ϕ1(x)
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
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
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where the three rotational fields ηi(x) (η′
i(x)) and the

three amplitude fields ρi(x) (ρ′
i(x)) reparameterize the six

real fields of the complex triplet scalar field ϕ(x) (ϕ(x)).
Here, the imaginary part is assigned to the second am-
plitude field2. SO(3) gauge symmetry allows one to re-
move three degrees of freedom from the six rotational
fields. Thus the vacuum structure of the SO(3) symme-
try is determined by only nine degrees of freedom. These
nine degrees of freedom can be taken as ρi(x), ρ′

i(x), and
(ηi(x)−η′

i(x)) without loss of generality. Here we will con-

2 The other two possible assignments and corresponding con-
sequences will be discussed elsewhere [16]

sider the following vacuum structure for the SO(3) sym-
metry breaking:

〈ρi(x)〉 = σi, 〈ρ′
i(x)〉 = σ′

i,

〈(ηi(x) − η′
i(x))〉 = 0. (4)

With this vacuum structure, the mass matrices of the neu-
trinos and charged leptons can be reexpressed as
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 (5)
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Mν = m0


1 0 0

0 1 0
0 0 1


+ m′

0


 s2

1s
2
2 0 s1c2s2

0 c2
1s

2
2 0

s1c2s2 0 c2
2




+m′′
0


 s

′2
1 s

′2
2 0 s′

1c
′
2s

′
2

0 c
′2
1 s

′2
2 0

s′
1c

′
2s

′
2 0 c

′2
2


 (6)

where s1 = sin θ1 = σ1/σ12 and s2 = sin θ2 = σ12/σ with
σ12 =

√
σ2

1 + σ2
2 and σ =

√
σ2

12 + σ2
3 . We define s′

1 and s′
2

similarly.
Note that the two nondiagonal matrices in the mass

matrix Me are rank 1 matrices. It is interesting to observe
that when the four angles θ1, θ2, θ′

1 and θ′
2 satisfy the

conditions
s1
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=
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1
,

c2
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2
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2
, (7)

which are equivalent to σ′
1/σ′

2 = σ1/σ2, σ′
12/σ′

3 = −σ3/σ12,
the two nondiagonal matrices in the mass matrix Me can
be simultaneously diagonalized by a unitary matrix Ue via
M ′
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e MeU
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e . Here,
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The hierarchical structure of the charged lepton mass im-
plies that m′′

1 << m′
1 << m1; it is then not difficult to

see that the matrix M ′
e will be further diagonalized by a

unitary matrix U ′
e via De = U

′†
e M ′

eU
′∗
e = U

′†
e U†

e MeU
∗
e U

′∗
e

with

De =


me 0 0

0 mµ 0
0 0 mτ


 (11)

and

U
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e (12)

=


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
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where me = O(m′′
1), mµ = m′

1 + O(m′′
1) and mτ = m1 +

O(m′′
1) define the three charged lepton masses. This in-

dicates that the unitary matrix U ′
e does not significantly

differ from the unit matrix. Applying the same conditions
given in (7), the neutrino mass matrix can be rewritten as

Mν = m0


 1 + ∆−s2

1 0 2δ−s2c2s1

0 1 + ∆−c2
1 0

2δ−s2c2s1 0 1 + ∆+


 , (13)

with

∆± = δ+ ± δ− cos 2θ2, δ± = (m′
0 ± m′′

0)/2m0. (14)

This neutrino mass matrix can be easily diagonalized by
an orthogonal matrix Oν via OT

ν MνOν . Explicitly, the ma-
trix Oν is found to be

Oν =


 cν 0 sν

0 1 0
−sν 0 cν


 , (15)

with
tan 2θν = 2δ−s1 sin 2θ2/(∆+ − ∆−s2

1). (16)

For the physical mass basis of the neutrinos and charged
leptons, we then obtain the CKM-type lepton mixing ma-
trix ULEP appearing in the interactions of the charged
weak gauge bosons and leptons, i.e., LW = ēLγµULEPνL
W−

µ + H.c. Explicitly, we have

ULEP = U
′†
e U†

e Oν

= U
′†
e


 ic1cν −s1 ic1sν

c2s1cν + s2sν −ic1c2 c2s1sν − s2cν

s1s2cν − c2sν −ic1s2 s1s2sν + c2cν


 (17)

The three neutrino masses are found to be

mνe
= m0[1 +

1
2
(∆+ + ∆−s2

1)

−1
2
(∆+ − ∆−s2

1)
√

1 + tan2 2θν ]

mνµ
= m0[1 + ∆−c2

1]

mντ = m0[1 +
1
2
(∆+ + ∆−s2

1)

+
1
2
(∆+ − ∆−s2

1)
√

1 + tan2 2θν ]. (18)

For tan2 2θν << 1, masses of the three neutrinos are sim-
ply given by

mνe
' m0[1 + ∆−s2

1 − 1
4
(∆+ − ∆−s2

1) tan2 2θν ]

mνµ ' m0[1 + ∆−c2
1],

mντ
' m0[1 + ∆+ +

1
4
(∆+ − ∆−s2

1) tan2 2θν ] (19)

from which one easily reads off the mass-squared differ-
ences

∆m2
µe = m2

νµ
− m2

νe
' m2

0[∆−(c2
1 − s2

1)

+
1
4
(∆+ − ∆−s2

1) tan2 2θν ][2 + ∆−]

∆m2
τµ = m2

ντ
− m2

νµ
' m2

0[∆+ − ∆−c2
1

+
1
4
(∆+ − ∆−s2

1) tan2 2θν ][2 + ∆+ + ∆−c2
1] (20)

It is noticed that when sin θν << 1, we are led to a
nearly two-flavor mixing scheme. From the recent atmo-
spheric neutrino data [1], which suggested a large neutrino
mixing between νµ and ντ , i.e., the relevant mixing angle
satisfies sin2 2θ > 0.8, we then obtain almost the same
constraint on θ2 when neglecting other small mixing an-
gles:

sin2 2θ2 > 0.8. (21)

Thus the condition sin θν << 1 is equivalent to δ−s1 �
δ+c2

1, and we have, to a good approximation, the simple re-
lations: ∆+ ' ∆− ' δ+ and tan 2θν ' 2δ−s1/δ+c2

1. With
this approximation, the neutrino mass-squared differences
become more simple

∆m2
µe = m2

νµ
− m2

νe

' m2
0δ+[c2

1 − s2
1 + (δ−s1)2/(δ+c1)2][2 + δ+]

∆m2
τµ = m2

ντ
− m2

νµ

' m2
0δ+[s2

1 + (δ−s1)2/(δ+c1)2][2 + δ+(1 + c2
1)] (22)

It has been shown [1,17,18] that for the atmospheric neu-
trino anomaly to be explained, the required neutrino mass-
squared difference ∆m2

τµ favors the range

5 × 10−4eV2 < ∆m2
τµ < 6 × 10−3.eV2 (23)

For the observed deficit of the solar neutrino fluxes in com-
parison with the solar neutrino fluxes computed from the
solar standard model to be understood [5], the neutrino
mass- squared difference ∆m2

µe is required to fall into the
range [17]:

6 × 10−11eV2 < ∆m2
µe < 2 × 10−5eV2. (24)
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Here, the larger and smaller values of ∆m2
µe provide Mik-

heyev–Smirnov–Wolfenstein [19] and just-so [20] explana-
tions, respectively, for the solar neutrino puzzle. It is seen
that the ratio between the two mass-squared differences
must satisfy ∆m2

µe/∆m2
τµ < 0.04. With this condition

and δ− << δ+, we then obtain from (22) the following
constraint on the mixing angle θ1:

|c2
1/s2

1 − 1| < 0.04 (25)

Note that this constraint is independent of the mass scale
m0. With these constraints, we arrive at the following re-
lations:

m′′
1

m′
1

∼
√

me

mµ
= 0.07,

m′′
1

m1
∼

√
memµ

mτ
= 0.004. (26)

Due to the smallness of the mixing angles in U ′
e and θν ,

we may conclude that the neutrino mixing between νe and
νµ is almost maximal:

sin2 2θ1 > 0.998. (27)

This may leave just-so oscillations as the only viable expla-
nation of the solar neutrino data, as can be seen from the
analyses in [21]. This requires that σ1 ' σ2 and m′

0 ' m′′
0 ;

these may need fine-tuning if they are not ensured by sym-
metries.

With the above analyses, we may come to the con-
clusion that with two-flavor mixing and the hierarchical
mass-squared differences ∆m2

µe << ∆m2
τµ, the present

scheme favors a bimaximal neutrino mixing pattern for
the explanations of the solar and atmospheric neutrino
flux anomalies.

It is not difficult to show that the resulting bimax-
imal neutrino mixing pattern allows the three neutrino
masses to be nearly degenerate and large enough for hot
dark matter without conflict with the current data on neu-
trinoless double beta decay. This can be seen from the
fact that failure to detect neutrinoless double beta decay
leads to bounds on an effective electron neutrino mass
〈mνe

〉 =
∑

i mνi
(ULEP)2ei < 0.46 eV [22]. To a good ap-

proximation, when neglecting the small mixing angles in
U ′

e, we obtain

〈mνe〉 ' m0|s2
1 − c2

1| < 0.46eV (28)

Assuming that neutrino masses are large enough to play
an essential role in the evolution of the large-scale struc-
ture of the universe, we may set m0 ∼ 2 eV, and thus the
above constraint will result in the a bound on the mixing
angle θ1,

|s2
1 − c2

1| < 0.23, (29)

which is weaker than the one given in (25).
The smallness of the mass-squared difference ∆m2

µe

implies that sin θν < 0.001 for m0 ∼ 2 eV. To a good
approximation, we may neglect the small mixing angle
θν and the small mixing of order m′′

1/m1 in U ′
e. With

these considerations, the CKM-type lepton mixing matrix

is simply given by

ULEP '




1√
2
i − 1√

2
−i
√

me

mµ
s2

1√
2
c2 − 1√

2
c2i −s2

1√
2
s2 − 1√

2
s2i c2


 , (30)

which arrives at the pattern suggested in [23] when the
small mixing angle at the order of magnitude

√
me/mµ

is neglected. Going back to the weak gauge and charged-
lepton mass basis, we find that the neutrino mass matrix
has the following simple form:

Mν ' m0


− me

mµ
s2
2 ic2 is2

ic2 s2
2 −c2s2

is2 −c2s2 c2
2


 . (31)

Going on the recent atmospheric neutrino data, we
are motivated to consider two particular interesting cases:
First, setting the vacuum expectation values to be σ2

3 =
σ2

1 + σ2
2 and σ1 = σ2, namely, s1 = s2 = 1/

√
2 (sin2 2θ1 =

sin2 2θ2 = 1), we then obtain a realistic bimaximal mixing
pattern with a maximal CP-violating phase. Explicitly,
the neutrino mass and mixing matrices read

Mν ' m0




−0.002 1√
2
i 1√

2
i

1√
2
i 1

2 − 1
2

1√
2
i − 1

2
1
2


 (32)

and

ULEP '




1√
2
i − 1√

2
−0.05i

1
2 − 1

2 i − 1√
2

1
2 − 1

2 i 1√
2


 ; (33)

When neglecting the small mixing angle at the order of
magnitude

√
me/mµ, we derive the pattern suggested by

Georgi and Glashow [15].
Second, setting the three vacuum expectation values σi

(i=1,2,3) to be democratic, i.e., σ1 = σ2 = σ3, hence s1 =
1/

√
2 and s2 =

√
2/3 (sin2 2θ1 = 1 and sin2 2θ2 = 0.89),

we then arrive at a realistic democratic mixing pattern
with a maximal CP-violating phase. The explicit neutrino
mass and mixing matrices are given by

Mν ' m0




−0.003 1√
3
i 2√

6
i

1√
3
i 2

3 −
√

2
3

2√
6
i −

√
2

3
1
3


 (34)

and

ULEP '




1√
2
i − 1√

2
−0.057i

1√
6

− 1√
6
i − 2√

6
1√
3

− 1√
3
i 1√

3


 ; (35)

when further neglecting the small mixing angle at the or-
der of magnitude

√
me/mµ, we obtain a similar form to

that provided by Mohapatra [24].
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M2
F = m2

F




1 + ξ 0 −s1( c2
s2

− s2
c2

ξ)

0 (s2
1 + c22

s2
2
) + (c2

1 + s2
2

c22
)ξ 0

−s1( c2
s2

− s2
c2

ξ) 0 (c2
1 + c22

s2
2
) + (s2

1 + s2
2

c22
)ξ


 (41)

From the hierarchical feature in ∆m2, i.e., ∆m2
µe <<

∆m2
τµ ' ∆m2

τe, and the nearly bimaximal mixing pattern,
formulas for the oscillation probabilities can be greatly
simplified to

Pνe→νe
|solar ' 1 − 4|Ue1|2|Ue2|2 sin2

(
∆m2

µeL

4E

)

Pνµ→νµ |atmospheric ' 1 − 4(1 − |Uµ3|2)|Uµ3|2

× sin2

(
∆m2

τµL

4E

)
,

Pνβ→να
' 4|Uβ3|2|Uα3|2 sin2

(
∆m2

τµL

4E

)
,(36)

and
Pνµ→νe

Pνµ→ντ

|atmospheric ' |Ue3|2
|Uτ3|2 << 1. (37)

This may present the simplest scheme for reconciling both
solar and atmospheric neutrino fluxes via oscillations of
three neutrinos.

On the other hand, the three nearly degenerate neu-
trino masses can be large enough for hot dark matter. The
relation between the total neutrino mass m(ν) and the
fraction Ων of critical density that neutrinos contribute is
[3]

Ων

Ωm
= 0.03

m(ν)
1 eV

(
0.6
h

)2 1
Ωm

' 0.09
m0

1 eV

(
0.6
h

)2 1
Ωm

(38)

with h = 0.5 − 0.8 the expansion rate of the universe
(Hubble constant H0) in units of 100 km/s/Mpc. Ωm is
the fraction of critical density that matter contributes.
For m0 ∼ 2 eV and h = 0.6, the fraction Ων ' 18% for
Ωm = 1.

We now come to discuss SO(3) gauge interactions in
the present scheme. Explicitly, the SO(3) gauge interac-
tions in the mass eigenstate of the leptons have the fol-
lowing form:

LF =
1
2
g′
3A

i
µ

(
ν̄LtiγµνL + ēLKi

eγ
µeL − ēRKi∗

e γµeR
)

(39)

with Ki
e = U

′†
e U†

e tiUeU
′
e. After the SO(3) gauge symmetry

is spontaneously broken down, the gauge fields Ai
µ receive

masses by “eating” three of the rotational fields. For the
SO(3) vacuum structure given above, A1

µ and A3
µ are not

in the mass eigenstates since they mix with each other.

The mass matrix of the gauge fields Ai
µ is found to be

M2
F =

1
4
g

′2
3


 σ2

12 + σ
′2
12 0 −(σ1σ3 + σ′

1σ
′
3)

0 σ2
13 + σ

′2
13 0

−(σ1σ3 + σ′
1σ

′
3) 0 σ2

23 + σ
′2
23




(40)
with σ2

ij = σ2
i + σ2

j . By using the conditions given in (7),
the above mass matrix reads (see (41) on top of the page)
with m2

F = g
′2
3 σ2

12/4 and ξ = σ
′2
12/σ2

12. This mass matrix is
diagonalized by an orthogonal matrix OF via OT

F M2
F OF .

Denoting the physical gauge fields as F i
µ, we then have

Ai
µ = Oij

F F j
µ. Explicitly,
A1

µ

A2
µ

A3
µ


 =


 cF 0 −sF

0 1 0
sF 0 cF




F 1

µ

F 2
µ

F 3
µ


 , (42)

with cF ≡ cos θF and sF ≡ sin θF . The mixing angle θF

is given by

tan 2θF =
2s1( c2

s2
− s2

c2
ξ)

( c2
2

s2
2

− s2
1) + ( s2

2
c2
2

− c2
1)ξ

. (43)

Masses of the three physical gauge bosons F i
µ are found

to be

m2
F1

=
m2

F

2

((
c2
1 +

1
s2
2

)
+
(

s2
1 +

1
c2
2

)
ξ

−
[(

c2
2

s2
2

− s2
1

)
+
(

s2
2

c2
2

− c2
1

)
ξ

]√
1 + tan2 2θF

)

m2
F2

= m2
F

((
s2
1 +

c2
2

s2
2

)
+
(

c2
1 +

s2
2

c2
2

)
ξ

)

m2
F3

=
m2

F

2

((
c2
1 +

1
s2
2

)
+
(

s2
1 +

1
c2
2

)
ξ +

[(
c2
2

s2
2

− s2
1

)

+
(

s2
2

c2
2

− c2
1

)
ξ

]√
1 + tan2 2θF

)
(44)

For the two bimaximal mixing cases considered above,
these formulas are simplified to be

tan 2θF =
2
√

2(1 − ξ)
1 + ξ

m2
F1

=
3m2

F

2

(
5
6

− 1
6

√
1 + tan2 2θF

)
(1 + ξ)

m2
F2

=
3m2

F

2
(1 + ξ)

m2
F3

=
3m2

F

2

(
5
6

+
1
6

√
1 + tan2 2θF

)
(1 + ξ). (45)
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for the bimaximal mixing pattern, i.e., s1 = s2 = 1/
√

2,
and

tan 2θF =
2(1 − 2ξ)

3ξ

m2
F1

= m2
F

(
1 +

7
4
ξ − 3

4
ξ
√

1 + tan2 2θF

)

m2
F2

= m2
F

(
1 +

5
2
ξ

)

m2
F3

= m2
F

(
1 +

7
4
ξ +

3
4
ξ
√

1 + tan2 2θF

)
(46)

for the democratic mixing pattern, i.e., s1 = 1/
√

2 and
s2 =

√
2/3. In general, the mixing angle θF is nonzero,

and masses of the three gauge bosons are split after spon-
taneous symmetry breaking. It is noted that for the bi-
maximal mixing with ξ = 1 and for the democratic mix-
ing with ξ = 1/2, the mixing angle θF will vanish, and
masses of the two gauge bosons F 2

µ = A2
µ and F 3

µ = A3
µ

will become degenerate.
In the physical mass basis of the leptons and gauge

bosons, the gauge interactions of the leptons are given by
the following form:

LF =
1
2
g′
3F

i
µ

(
ν̄LtjOji

F γµνL + ēLV i
eγµeL − ēRV i∗

e γµeR

)
(47)

with V i
e = Kj

eOji
F . To be explicit, we have

K1
e =


 2c1s1 ic2(s2

1 − c2
1) is2(s2

1 − c2
1)

−ic2(s2
1 − c2

1) 2c1s1c
2
2 2c1s1c2s2

−is2(s2
1 − c2

1) 2c1s1c2s2 2c1s1s
2
2


 , (48)

K2
e =


 0 c1s2 −c1c2

c1s2 0 is1

−c1c2 −is1 0


 , (49)

and

K3
e =


 0 is1s2 −is1c2

−is1s2 2c1c2s2 (s2
2 − c2

2)c1

is1c2 (s2
2 − c2

2)c1 −2c1c2s2


 , (50)

and

V 1
e = cos θF K1

e + sin θF K3
e ,

V 2
e = K2

e ,

V 3
e = − sin θF K1

e + cos θF K3
e (51)

As the mixing matrix U ′
e does not significantly devi-

ate from the unit matrix, the main features in [6] do not
change significantly. In particular, we will obtain, from the
current data on the lepton flavor-violating process µ → 3e
with Br(µ → 3e) < 1 × 10−12 [25], a similar constraint on
the SO(3) symmetry-breaking scale,

σ12 > 103v
mF

√
m2

F3
− m2

F1

mF1mF3

s1
√

c1s2, (52)

with v = 246 GeV the weak symmetry-breaking scale.
Specifically, we have

σ12 > 103 v

2
√

3

(
tan 2θF (1 + 1

2
√

2
tan 2θF )

1 − 1
24 tan2 2θF

)1/2

(53)

for the bimaximal mixing case, and

σ12 > 103 v

3

(
tan 2θF (1 + 3

4 tan 2θF )√
3(1 + 5

6 tan 2θF + 1
8 tan2 2θF

)1/2

(54)

for the democratic mixing case. When the mixing angle
θF is at the same order of magnitude as the weak mixing
angle θW , by setting tan 2θF ' 3/2, we then obtain

σ1 ' σ2 ' σ3/
√

2 > 0.33 × 103 v ' 81TeV (55)

for the bimaximal mixing case, and

σ1 ' σ2 ' σ3 > 0.2 × 103 v ' 49TeV (56)

for the democratic mixing case. Suppose that the SO(3)
gauge coupling constant g′

3 is at the same order of magni-
tude as the electroweak coupling constant g; then masses
of the three SO(3) gauge bosons are bounded for θF ∼ θW

to be

mF1 > 38 TeV, mF2 > 53 TeV, mF3 > 57 TeV
(57)

for the bimaximal mixing case, and

mF1 > 24 TeV, mF2 > 29 TeV, mF3 > 32 TeV
(58)

for the democratic mixing case. When the mixing angle
becomes very small θF << 1, the constraint on the SO(3)
symmetry-breaking scale is approximately given by

σ1 ' σ2 ∼ σ3 > 45
√

tan 2θF TeV. (59)

Once the mixing angle θF is extremely small, at the or-
der of magnitude sin θF ∼ 10−4, the SO(3) symmetry-
breaking scale can be below 1 TeV, and the SO(3) gauge
boson masses may reach to the order of magnitude 300
GeV.

In summary, we have investigated a realistic scheme
for lepton masses and mixings within the framework of
the gauged SO(3) lepton flavor symmetry discussed re-
cently in [6]. A nearly bimaximal neutrino mixing pattern
with maximal CP-violating phase has been derived to ex-
plain the solar and atmospheric neutrino data reported re-
cently by the Superkamiokande Collaboration experiment
in which the LSND Collaboration results [26] are not con-
sidered. This is because if the LSND results are included,
it is likely that a sterile neutrino needs to be introduced.
[27]. We has also shown that because of the intriguing fea-
ture of the vacuum structure of spontaneous SO(3) gauge
symmetry breaking, the three Majorana neutrino masses
in the scheme are allowed to be nearly degenerate and
are large enough for a hot dark matter candidate. Though
neutrinoless double beta decay may become unobservably
small, the scheme still allows rich interesting phenomena
on lepton flavor violations via the SO(3) gauge interac-
tions.
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